“新冠预测者”曹云龙:每年或现多个感染高峰 正研发新药以提高防治效率******
中新网北京12月28日电(韦香惠)不久前,《自然》杂志(Nature)公布了2022年度科学影响“十大人物”(Nature’s 10),北京大学生物医学前沿创新中心(BIOPIC)副研究员、北京昌平实验室领衔科学家曹云龙入选。
这一榜单旨在选出十位在过去一年间为重大科学进展做出重要贡献的人物。曹云龙的入选理由是,作为新冠预测者(COVID-predictor),追踪了新冠病毒的演化,并准确预测了新突变和新毒株的出现。
日前,中新网专访了曹云龙,就目前全球几种主要流行毒株的特点、奥密克戎致病性变化、以及感染防治策略等话题进行了探讨。
不同突变株每年可导致多个感染高峰
曹云龙介绍,国内现阶段主要流行的是BA.5.2和BF.7,二者都属于奥密克戎BA.5支系。他表示,我国大部分人群接种的是原始株疫苗,其诱导的体液免疫被奥密克戎突变株严重逃逸,加之多数人群接种疫苗已经一年以上,体内中和抗体水平下降,进一步削弱了预防感染的作用。
他提到,当感染BF.7之后,对BA.5和BF.7的中和抗体水平较高,短时间内不会再重复感染同一毒株。但是,与BA.5.2和BF.7相比,目前国际上主要流行的BQ.1.1、XBB等新毒株的免疫逃逸能力更强,即使是感染了BF.7,康复后产生的抗体对XBB等最新突变株的中和能力也较低。因此可以预见的是,国内BA.5.2和BF.7感染高峰过去后,不排除出现因BQ.1.1、XBB或者是其他免疫逃逸能力更强的毒株驱动的感染高峰。
以色列人群新冠重复感染率大型队列研究 受访者供图
在国际上其它地区,重复感染已司空见惯。曹云龙提供的数据表明,最新流行株如BQ.1.1和XBB的重复感染率已达到40%,并在持续攀升。他表示,今年绝大部分国家都经历了四波重大感染高峰,多为不同突变株所诱导,平均三个月一次。目前看来,国内也很难完全避免。
重点关注奥密克戎在高危人群中的致病性
曹云龙表示,现在看到的奥密克戎的致病性整体上下降,主要是因为疫苗接种的普及以及大量人群感染导致的免疫力增强。虽然疫苗和自然感染建立的免疫屏障不能有效防止感染,但可以减轻症状,所以看上去似乎是病毒的致病性下降了。但他强调,这并不能与病毒的天然毒性相提并论。
曹云龙提到,社会群体中还有很多无法接种疫苗或者接种后无法产生有效免疫应答的人群,例如免疫缺陷人群、高龄老人、以及肿瘤患者等,他们也是新冠感染后发生重症和死亡的高危人群,因此仍然需要监测奥密克戎在这些高危人群中的致病性。
他介绍,在美国、英国、日本等国家,奥密克戎已经造成极大的死亡和重症负担。例如,在英国,奥密克戎BA.1造成的总死亡人数与Delta相当,虽然从BA.1→BA.2→BA.5,死亡峰值呈现下降趋势,但累计的死亡总数并没有大幅度下降。而日本今冬疫情造成的重症人数和死亡人数已逼近历史记录且尚未出现下降趋势。
曹云龙表示,目前的疫苗对重症的预防效果都较好,提高老年人的疫苗接种率仍具有重要意义。对于不适合疫苗接种的人群,则需要探索其他应对策略。
日本过去两年每日新增新冠死亡人数变化 受访者供图
广谱中和抗体有望提高治疗和预防效率
曹云龙认为,如何让疫苗和抗体药物的研发周期跟上病毒进化的速度是后续需要解决的问题。
“一个抗体药物的临床开发往往需要半年到一年的时间,也就是它能够使得社会受益的前提是该抗体能够应对未来半年到一年后所流行病毒。”曹云龙表示,新冠病毒突变较快,且免疫逃逸特性强,如何挑选开发广谱抗体药物,使得药物研发跟得上病毒突变至关重要,也是目前研发能够高效预防感染的疫苗所面临的痛点。
曹云龙团队建立了新冠免疫逃逸突变位点预测模型。他表示,预测到未来新冠会发生的突变,可以提前挑选出不受这些突变影响的抗体药物进行临床研发。
目前,曹云龙团队已开发两个广谱中和抗体SA55和SA58。据介绍,这两个抗体是从接种新冠疫苗的非典康复者体内筛选的,其作用位点避开了人群免疫的优势免疫表位,使得其很难被逃逸。
“SA55在目前的人群免疫背景中几乎不存在类似抗体,也是目前唯一一个处于临床开发阶段并对目前所有已知的新冠流行毒株都有效的抗体。”曹云龙介绍,SA55和SA58正在开展临床试验,产品剂型包括注射剂和喷雾剂。其中,注射剂可用于治疗和长效预防中重症,尤其适用于老年人或免疫缺陷人群等不适合疫苗接种或免疫反应差的人群。
与注射相比,喷雾剂直接作用于上呼吸道,只需很低的剂量就可实现预防感染的作用。初步安慰剂随机对照试验数据显示,SA58喷雾剂用于暴露后预防对有症状感染的保护效率可高达80%以上。“SA55活性更高,预防效率预计更高,且所需剂量会更低、成本也会更低”。
曹云龙提到,SA55/SA58喷雾有望成为一款可供全民居家日常使用的新冠预防和治疗产品,目前正在准备进行更为严谨的双盲临床试验。
新冠鼻喷中和抗体使用示意图 受访者供图
“虽然不能保证SA55未来一定不会逃逸,但我和团队已经在开发其他候选抗体,如果SA55被新毒株逃逸,可以马上有新的抗体替补。”曹云龙表示,除了广谱抗体,他和团队后续还将研发广谱新冠疫苗,以解决现有疫苗面临的技术瓶颈。(完)
聚焦人工智能技术前沿与治理 中外专家学者国际论坛建言献策******
中新网北京12月5日电 (记者 孙自法)2021人工智能合作与治理国际论坛“人工智能技术前沿与治理”主论坛,12月5日在清华大学以线上线下结合方式举行,中外人工智能(AI)领域专家学者聚焦人工智能技术前沿与治理这一主题,发表主旨演讲建言献策,并深入研讨交流。
美国国家科学院院士、美国艺术与科学院院士、约翰·贝茨·克拉克奖得主、斯坦福大学商学院技术经济学教授、以人为本人工智能研究所副所长苏珊·阿西(Susan Athey)认为,大学在指导人工智能创新方面可以发挥优先引导的关键作用。由于私营部门的技术人员缺乏伦理、哲学方面的训练,难以开发出具有可解释性的算法框架,深化这类研究能够在人工智能治理的问题识别、建立开发实践框架、提供指引等方面发挥重要作用。此外,由于数据可以带来巨大的规模效应,当前“软件即服务”的平台经济模式已非常普及。人工智能和数据需求可能带来“伪”市场集中,因此,未来对“机器换人”的预测非常具有挑战性,需要重新关注和思考人工智能如何用于应对老龄化等公共管理问题,使基于人工智能的公共服务变得更加高效。
国际人工智能协会前主席、清华大学人工智能国际治理研究院学术委员约兰达·吉尔(Yolanda Gil)指出,由于人类对智能机制认知不足、智能行为本身的复杂性、观测手段的有限性以及个体知识、职业、信仰、文化背景等的差异性,导致当前人工智能研究中面临着一系列挑战,因此,需要加强人工智能基础研究工作,这需要跨领域、跨学科的共同努力。当前,理解人工智能机理和构建人工智能世界模型是人工智能研究面临的两大挑战。一方面,理解人工智能机理需要构架“感知-思考-行动”的智能模型,加强对大脑思维机理的理解,建议借鉴神经科学研究联合体的有益经验,建立全球性的人工智能研究数据库,形成全球共享的研究社区。另一方面,构建人工智能世界模型则需要建立在人类经验、社会习俗、专业技能的基础上,建议建立类似于自由协作式的知识库,通过全民民众参与,推动知识在全球层面共享。
中国科学院院士、清华大学人工智能研究院名誉院长、清华大学人工智能国际治理研究院学术委员张钹表示,由于深度学习等算法存在不可解释性,导致前两代人工智能算法存在着公平性、安全性问题和不可靠、不可信等缺陷。发展第三代人工智能关键在于发展可解释的、鲁棒的人工智能理论和方法,开发安全、可信、可靠、可扩展的人工智能技术,以“数据驱动+知识驱动”构建支持可解释的人工智能算法的深度学习平台,赋能人工智能安全与防御优化。从数据中真正获取智能要靠知识的帮助与引导,并需要政策法规对数据使用的正确规范,充分利用知识、数据、算法和算力四个要素结合,推动人工智能的创新发展。
中国工程院院士、北京大学信息科学技术学院院长、鹏城实验室主任、清华大学人工智能国际治理研究院学术委员高文认为,当前人工智能发展处于新一代人工智能向强人工智能发展的关键阶段,至2030年,中国人工智能发展总体要达到世界领先水平。从战略问题看,中美欧三方在人工智能人才、研究、开发、应用、硬件、数据等方面竞争激烈,当前中国人工智能发展在战略政策、数据资源、应用场景、潜力人才方面具有优势,而在基础理论、原创算法、关键部件、国际平台、高级人才等方面还存在短板。从战术问题看,人工智能2.0需采用基于大数据的统计AI解决大规模AI应用需求,鼓励各种可能的强人工智能探索,“可解释机器学习+推理”和“仿生系统+AI大算力”是可能的技术路线图;在安全问题层面,强人工智能的安全风险主要来源于模型的不可解释性、算法和硬件的不可靠性和自主意识的不可控性,人工智能2.0应采用DPI与“防水堡技术”解决数据安全与隐私保护,重视探索人工智能伦理问题,并基于“理论-技术研究-应用”的阶段性采取不同的风险防范策略。
美国国家工程院外籍院士、英国皇家工程院外籍院士、清华大学高等研究院双聘教授沈向洋表示,AI已经应用于生活和工作的方方面面,目前甚至在法律上也具有一定的应用,比如美国已经有很多法庭用机器学习和人工智能方法帮助判刑,包括决定刑期这样非常重要的问题。但是我们还无法理解一些AI决策的缘由。未来发展过程中我们不能只看见AI决策的“黑箱”,应该打开“黑箱”,探究和理解其中的具体内容和因果关系,我们一定要做可解释性的AI。同时,他提到负责任的AI应具备公平性、可靠性、隐私性、包容性、透明性和责任性的特点,作为新兴领域,还需要向其他领域学习,从而更好的服务于人类。
中国工程院外籍院士、清华大学智能产业研究院院长、人工智能国际治理研究院学术委员张亚勤指出,“碳中和”是人类能源结构的又一次变革。“碳中和”既是可持续发展的必然选择,又是产业结构调整和发展的重大机遇。企业在“碳中和”背景下都面临转型增效的压力。人工智能+物联网是智联网,智联网可以赋能绿色计算,助力“碳中和”。智联网助力“碳中和”主要包括三个环节:首先,由数据驱动和人工智能优化引擎来实现智能决策。其次,多参数全链系统配置优化。最后,通过多源多维异构感知融合实现智能感知。智联网可用于能源融合、降低ICT产业的碳排放和推动新兴产业发展等。他还介绍了智联网赋能的绿色计算平台的框架,该平台包括人工智能驱动节能减排和高能效人工智能系统,应用路径包括绿色园区和工业节能。
2021人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院承办,国际支持机构为联合国开发计划署。论坛为期两天,设有三场主论坛、一场特别论坛和七场专题论坛。“人工智能技术前沿与治理”主论坛由清华大学计算机科学与技术系教授、人工智能研究院常务副院长孙茂松主持。(完)